Math 2211: Recitation 11 (T)

Naufil Sakran

- (1) Do all **three** the following problems:
 - (a) Evaluate the line integral $\int_C xy\,ds$ where $C: x=t^2, y=2t, \ 0\leq t\leq 1.$

(b) Evaluate the line integral $\int_C xe^y dx$ where C is the arc of the curve $x = e^y$ from (1,0) to (e,1).

(c) Let $\mathbf{F}(x,y,z) = \langle \sin x, \cos y, xz \rangle$ and $\mathbf{r}(t) = \langle t^3, -t^2, t \rangle$ where $0 \le t \le 1$. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is given by the vector function $\mathbf{r}(t)$.

- (2) Solve the following problems. (Do any two of them).
 - (a) Use the given transformation to evaluate the integral $\iint_R (x-6y)dA$, where R is the triangular region with vertices (0,0),(5,1) and (1,5); with transformation $x=5u+v,\,y=u+5v$.

(b) Let $\mathbf{F}(x,y) = \langle xy^2, x^2y \rangle$ and $C: \mathbf{r}(t) = \langle t + \sin(\frac{\pi t}{2}), t + \cos(\frac{\pi t}{2}) \rangle$ where $t \in [0,1]$. Find a function f such that $\mathbf{F} = \nabla f$ and use it to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

(c) Use Green's Theorem to evaluate the line integral along the given positively oriented curve. $\int_C xy^2\,dx + 2x^2y\,dy, \quad C \text{ is the triangle with vertices } (0,0), (2,2) \text{ and } (2,4).$

(Bonus) Solve the following integrals. (Do any one of them).

(a) Use Green's Theorem to evaluate the line integral along the given positively oriented curve. $\int_C (y+e^{\sqrt{x}})dx + (2x+\cos{(y^2)})dy, \quad C \text{ is the boundary of the region enclosed by } y=x^2 \text{ and } x=y^2.$

(b) Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle e^x + x^2y \,,\, e^y - xy^2 \rangle$, C is the circle $x^2 + y^2 = 25$ oriented clockwise.