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History (The Wilf Conjecture)

In 1978, Wilf proposed the following conjecture [4]:

Conjecture (Wilf Conjecture)

Let S be a complement finite submonoid of Ny, (a.k.a numerical semigroup).
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History (The Wilf Conjecture)

In 1978, Wilf proposed the following conjecture [4]:

Conjecture (Wilf Conjecture)

Let S be a complement finite submonoid of Ny, (a.k.a numerical semigroup).
e The conductor of S, denoted by c(S) is the smallest integer ¢ such that
c+Ny CS.
e The sporadic elements of S, are elements in S that are less than c. We denote
their cardinality by n(S).
e The embedding dimension, e(S) of S, is the cardinality of the minimal generating
set of S\0.
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History (The Wilf Conjecture)

In 1978, Wilf proposed the following conjecture [4]:

Conjecture (Wilf Conjecture)

Let S be a complement finite submonoid of Ny, (a.k.a numerical semigroup).
e The conductor of S, denoted by c(S) is the smallest integer ¢ such that
c+ Ny CS.
e The sporadic elements of S, are elements in S that are less than c. We denote
their cardinality by n(S).
e The embedding dimension, e(S) of S, is the cardinality of the minimal generating
set of S\0.
The Wilf conjecture states that for any numerical semigroup S, we have

c(S) < e(S)n(S)
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Example

e Let $=1{0,3,6,7,...}. We have ¢(S) =5, n(S) =2 and ¢(S) = |{3,7,8}| = 3.
c(§)=5<e(S)n(S)=6
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Example

e Let $=1{0,3,6,7,...}. We have ¢(S) =5, n(S) =2 and ¢(S) = |{3,7,8}| = 3.
c(§)=5<e(S)n(S)=6

o Let $=1{0,3,5,6,8,...}. We have ¢(S) =7, n(S) =4 and e(S) = 2.
c(S)=7<e(S)n(S) =12
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Example

e Let $=1{0,3,6,7,...}. We have ¢(S) =5, n(S) =2 and ¢(S) = |{3,7,8}| = 3.
c(§)=5<e(S)n(S)=6

o Let $=1{0,3,5,6,8,...}. We have ¢(S) =7, n(S) =4 and e(S) = 2.
c(S)=7<e(S)n(S) =12

o Let $=1{0,2,5,...}. We have ¢(S) =4, n(S) =2 and e(S) = 2.
c(S)=4=e(S)n(S)=14
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Example

e Let $=1{0,3,6,7,...}. We have ¢(S) =5, n(S) =2 and ¢(S) = |{3,7,8}| = 3.
c(§)=5<e(S)n(S)=6

o Let $=1{0,3,5,6,8,...}. We have ¢(S) =7, n(S) =4 and e(S) = 2.
c(S)=7<e(S)n(S) =12

o Let $=1{0,2,5,...}. We have ¢(S) =4, n(S) =2 and e(S) = 2.
c(S)=4=¢e(S)n(S) =4

Remark: Let m(S) denote the smallest positive integer in S\0, then e(S) < m(S5).
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Connections in Modern Mathematics

Theorem (Weierstrass Gap Theorem)

Let X be a smooth projective curve of genus g and let P € X. Then there exists
exactly g numbers ny < --- < ng such that (f)ss # n,P for any f € k(X) where
r € lg].
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Connections in Modern Mathematics

Theorem (Weierstrass Gap Theorem)

Let X be a smooth projective curve of genus g and let P € X. Then there exists
exactly g numbers ny < --- < ng such that (f)ss # n,P for any f € k(X) where

r € lg].

Example: Let X = {[x;y;z] € P?> : xy — z> = 0}. X is a smooth projective variety.
Let P=[1;1;1] € X. Forany f = & € k(X), (f)oo = ordp(h), where

ordp(h) = max{k : h€mp, h¢ m5™

For the point P, we have mp = (x —y,y — z,x — z). As (%)oo =1, so there are no
positive integer n for which (f)o, # n. With Macaulay2, one can see that genus of the

curve is 0.
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Connections in Modern Mathematics

Theorem (Algebraic Codes (M. Homma, S.J Kim , (2001) [3]))

Let P be IF4-code constructed from rational points of a smooth projective curve X.
Let Q1 and Q> be two distinct rational points, each not belonging to P. Let
(a1, 2) € G(Q1, Q) (gap set of (Q1, Q2)), where oy > 1 and

U1 Q1+ a2Q2) = £((a1 — 1) Q2 + a2 @2)
Assume that for some [31, B2 we have (1,52 —t — 1) € G(Q1, Q2) for all t such that
0<t<min{fr—1,2g—1— (a1 +ap)}
Put D = (a1 + 1 — 1)Q1 + (a2 + B2 — 1)Q2) then the minimum distance of the code
(X, P, D)q satisfies
d>degG—(2g—2)+1
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Definition

Let S C N¢ be a complement finite submonoid (a.k.a generalized numerical
semigroup). Let < be a partial order on N¢ such that for x = (x1, ..., X4),
y=U1,---,ya) €N, x <yifandonly if x; <y foralli=1,...,r. Let
H(S) = Ng\S.
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Definition

Let S C N¢ be a complement finite submonoid (a.k.a generalized numerical
semigroup). Let < be a partial order on N¢ such that for x = (x1, ..., X4),
y=U1,---,ya) €N, x <yifandonly if x; <y foralli=1,...,r. Let

H(S) = NJ\S. We define
e The conductor of S, denoted by ¢(S) is the cardinality of the set

{x € N§ : x < h for some h € H(S)}

o Let n(S) denote the cardinlity of the set

{x €S : x < hforsome he H(S)}

o Let e(S) denote the cardinality of the minimal set of generators of S.
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Conjecture (Generalized Wilf Conjecture (C. Cisto, M. DiPasquale, G. Failla, Z.

Flores, C. Peterson, (2020) [2]))

Let S C Ng be generalized numerical semigroup. Then

dc(S) < e(S)n(S)

Naufil Sakran

Generalized Wilf Conjecture



Unipotent Wilf Conjecture
0000000000000 000000

©® Unipotent Wilf Conjecture

Naufil Sakran

Generalized Wilf Conjecture



Unipotent Wilf Conjecture
0000000000000 000000
Definition

Let U(n,N) denote the set of upper triangular unipotent n x n matrices with entries
from Nj.
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Definition

Let U(n,N) denote the set of upper triangular unipotent n x n matrices with entries

from Np.
Let U(n, N)k = {(Xij)lgi,jgn € U(H,N) k< maX1§f7j§,,X,'j} U {1,,}
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Let U(n,N) denote the set of upper triangular unipotent n x n matrices with entries
from Nj.
Let U(n, N)k = {(Xij)lgi,jgn € U(H,N) k< maX1§f7j§,,X,'j} U {1,,}
Define
1 a1 a an—1
01 0 ... 0
P(n,N) = 0 0 1 0 . {al,...,a,,_l}gNo
0 0 O 1

Define P(n, N) similarly.
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Definition

Let G = U(n,C) and M = Gy. Define S to be complement finite submonoid in M.
The generating number of S relative to M, denoted by ry,(S) is the smallest positive
integer k such that U(n,N), NS CS.
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Definition

Let G = U(n,C) and M = Gy. Define S to be complement finite submonoid in M.
The generating number of S relative to M, denoted by ry,(S) is the smallest positive

integer k such that U(n,N), NS CS.
e dy =dimG
e c(S) :=1r(S)™. (Conductor of S relative to M.)
e n(S) = |S5\U(n, N)rM(5)| + 1.
e ¢(S) :=min{|G| : G generates S\{1,}}. (Embedding dimension of S)
e g(S) = |M\S|. (Genus of S relative to M.)
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Conjecture (Unipotent Wilf Conjecture)

Let G be a unipotent linear algebraic group. Let M = Gy. If S is a complement finite
submonoid of M, then we have

dm(S)em(S) < e(S)nm(S).
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Conjecture (Unipotent Wilf Conjecture)

Let M = U(n,N). If S is a complement finite submonoid of M, then we have

dm(S)em(S) < e(S)nm(S).

<’2’> rm(S)B) < o(S)nm(S).

Conjecture (Generalized Wilf Conjecture)

Let M = P(n,N). If S is a complement finite submonoid of M, then we have

(n—1)rm(S)" ™ < e(S)num(S).
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Let ¢ be the monoid isomorphism defined by
¢ : P(n,N) — N1

(a1j)2<j<n — (a12, a13, - .., ain)

Naufil Sakran

Generalized Wilf Conjecture



0000080000000 000000
Let ¢ be the monoid isomorphism defined by
¢ : P(n,N) — N"1

(a1j)2<j<n — (a12, a13, - .., ain)

Let S be complement finite submonoid in P(n,N) and let T = ¢(S). Clearly T is a
generalized numerical semigroup in N9—1.
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Let ¢ be the monoid isomorphism defined by
¢ : P(n,N) — N"1

(a1j)2<j<n — (a12, a13, - .., ain)

Let S be complement finite submonoid in P(n,N) and let T = ¢(S). Clearly T is a
generalized numerical semigroup in N9~1. Let H(T) = [N"1\ T|, we define

((T)=|{xeNd :x<h he HT)}, n(T)={xeT:x<h heH(T)}
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Let ¢ be the monoid isomorphism defined by
¢ : P(n,N) — N"1

(a1j)2<j<n — (a12, a13, - .., ain)

Let S be complement finite submonoid in P(n,N) and let T = ¢(S). Clearly T is a
generalized numerical semigroup in N9~1. Let H(T) = [N"1\ T|, we define

((T)=|{xeNd :x<h he HT)}, n(T)={xeT:x<h heH(T)}

We now have our generalization of [2]. Note that ¢(T) < cym(S) and n(T) < npm(S).

(n=1)e(T) < cu(S) < e(T)n(T) < em(S)mu(S)
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Example (c(S) < e(¢(S))n(4(S)))

Let S = ([0,0],[3,0],[0,2],P7) C P(3,N). Then c(S) = 7% = 49,
e(¢(S)) = e(S) =12 and n(¢(S)) = 11. So, 98 < 132. Note that here n(S) = 12.

14

10
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Example (c(S) > e(4(S))n(4(S)))

Let S = ([0,0],[2,0],[3,0], [2, 1], [3. 1].[0,2]. [0, 3], P+) C P(3,N). Then ¢(S) = 16,
e(6(S)) = 8 and n(¢(S)) = 3. So, 32 > 24.

8

7
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Conjecture

Let S be a complement finite submonoid of M = P(n,N). Then we have

nu(S) _ cm(S)
n(#(5)) — c(o(5))
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Conjecture

Let S be a complement finite submonoid of M = P(n,N). Then we have

nu(S) _ cm(S)
n(#(5)) — c(o(5))

In example 1, we had ny(S) = 12, and ¢(¢(S)) = 48. So,

12 49
i S
11 = 48
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Conjecture

Let S be a complement finite submonoid of M = P(n,N). Then we have

nu(S) _ cm(S)
n(#(5)) — c(o(5))

In example 1, we had ny(S) = 12, and ¢(¢(S)) = 48. So,

12
>
72

In example 2, we had ny(S) = 11, and ¢(¢(S)) = 8. So,

58
| O

1
3

v
®| &5
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Theorem (Finite Generation)

Let G be a unipotent linear algebraic group. If S is a unipotent numerical monoid in

M = Gy, then S is finitely generated. Furthermore, S possesses a unique minimal set
of generators.
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Theorem (Finite Generation)

Let G be a unipotent linear algebraic group. If S is a unipotent numerical monoid in
M = Gy, then S is finitely generated. Furthermore, S possesses a unique minimal set
of generators.

Proof: One way is to take a generating set and remove the dependent elements.

Another approach applies to general unipotent linear algebraic group and use
techniques in Borel, H. Chandra (1961) [1].
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Let S be a unipotent numerical monoid in M = Gy, where G is a unipotent linear
algebraic group. Then the following inequality holds

er(S)

J < gu(S) < em(S)
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Coordinate Monoids

Definition
Let S be a submonoid of M € {U(n,N),P(n,N)}. The (/) (j > i), submonoid of
S, denoted by Sj;, is the monoid defined by

SUZZSQ{E,; : SEN()}

where Ej; is a unipotent matrix with 1 in the (i, )" entry and 0 elsewhere
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Coordinate Monoids

Definition
Let S be a submonoid of M € {U(n,N),P(n,N)}. The (/) (j > i), submonoid of
S, denoted by Sj;, is the monoid defined by

SUZZSQ{E,; : SEN()}

where Ej; is a unipotent matrix with 1 in the (i, )" entry and 0 elsewhere e.g

0
Ex; = 1] e U(3,N)
1

o O
o = O
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Restricting to complement finite submonoid S C M = P(n,N), we define

Si=5SN({0} x -+ xNx---x{0})

We call S; the basic invariants of a submonoid of M.
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Restricting to complement finite submonoid S C M = P(n,N), we define
Si=5SN({0} x -+ xNx---x{0})

We call S; the basic invariants of a submonoid of M.

FACTS:
C(Sl) cee C(Snfl) < CA/I(S)

g(51) + - +8(Sn-1) < gm(S)
n(Sl) .- -n(S,,,l) < nM(S)
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Theorem (Bound on the genus of S)

Let S C M = P(n,N) be a complement finite submonoid and let g1, . ..,gn—1 denote
the genera of Si,...,Sp_1 respectively. Let k = rpy(S). Then we have

n—1
e(gr, - gn-1) <gm(S) < D (1Y K" e, ga1)
j=1

where

ej(xl,...,x,,_l): Z X,'1~-'X,'j

1<i<-<ij<n—1

Naufil Sakran

Generalized Wilf Conjecture



Unipotent Wilf Conjecture
0000000000000 0e0000

Definition (Thick & Thin Unipotent Numerical Groups )

Let S C M = P(n,N) be a complement finite submonoid and let g1, ..., g,—1 denote
the genera of 51,...,5,_1 respectively. Let ny,...,n,_1 denote the sporadicities of
S1,...,5,_1 respectively. If

n—1
Z g = gm(S)
j=1

holds, then S is called a thick monoid.
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Definition (Thick & Thin Unipotent Numerical Groups )

Let S C M = P(n,N) be a complement finite submonoid and let g1, ..., g,—1 denote
the genera of 51,...,5,_1 respectively. Let ny,...,n,_1 denote the sporadicities of
S1,...,5,_1 respectively. If

n—1
Z g = gm(S)
j=1

holds, then S is called a thick monoid. If
n—1
[In=2m(s)
j=1

holds, then S is called a thin monoid.
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©.7) 7
0.6) 7
0.5) 7
(0,4)[(1,4) 7
a3 7
ao 7
- Janley|enle 7
(0,0) (4,0)|(5.0)|(6,0)|(7,0) 7

Figure 1: Thick Monoid
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(0,3) 7”?”” o 7
(0,2) 7”?”” o 7
0 eolenjen| |
(0,0) ””3”” (3,0) o (5,0) (7,0) 7

Figure 2: Thin Monoid
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Let S be a unipotent thick numerical monoid in M = P(n,N), then the Unipotent Wilf
Conjecture holds.
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Theorem

Let S be a unipotent thin numerical monoid in M = P(n,N) with coordinate monoids
S1,...,5,-1 and let ey, ...,e,_1 denote their embedding dimension respectively. Let
m; denote the smallest non-zero entry in S;. Then we have the following

n—1
e(S):ZeH— Z Zmi H (mj — 1)
i=1 IC{1,..,n—1}, [1|>2 \ i€l jeN{i}
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Theorem

Let S be a unipotent thin numerical monoid in M = P(n,N) with coordinate monoids
S1,...,5,-1 and let ey, ...,e,_1 denote their embedding dimension respectively. Let
m; denote the smallest non-zero entry in S;. Then we have the following

n—1
e(S):ZeH— Z Zmi H (mj — 1)
i=1 IC{1,..,n—1}, [1|>2 \ i€l jeN{i}

Theorem

Let S be a unipotent thin numerical monoid in M = P(n,N) such that
Hj";f cj =rm(S)""1, then the Unipotent Wilf Conjecture holds which in this case is
also equivalent to the Generalized Wilf Conjecture.
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Thank You

For questions, you can email me at nsakran@tulane.edu
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