Math 6051/3051: Recitation 11 ®

Naufil Sakran

Do all of the following problems.

(1)

(2)

Find all z € R that satisfy the equation |z + 1|+ |z —2|=T.
Sol:

r+l+2-2=7 = zx=4
—(x+1)-(z-2)=7 = x=-3
(x+1)-(x-2)=7 = No solutions

—(z+1)+(z-2)=7 = No solutions

Show that if A and B are bounded set of R, then A u B is also bounded. Furthermore, show that
sup{Au B} = sup{sup A, sup B}.

Sol:

Let A and B are bounded set. If M and N are upper bounds of A and B respectively, then max{A, B}
is an upped bound of Au B. In particular, sup{A u B} < sup{sup A, sup B}. For the converse, let
sup{sup A,sup B} = sup A. Now if M is an upper bound of Au B it implies sup A < M. Thus,
sup{sup 4, sup B} < sup{Au B}.

Show that lim (n—\/j) =0.
Sol:

= lim
n—o0o

< lim
n—o00

0< lim

n— 00

n+1

So, lim(n—‘ﬁ) =0.

Let 1 =a >0 and x,41 = T, + i for n € N. Determine whether the sequence (z,) converges or
diverges. '

Sol:

If it converges, then it limit would be the solution of the equation = = x + % But since, this equation
possesses no solutions, so, x,, does not converge.



(5)

(8)

(10)

Show directly that a bounded, monotone increasing sequence is a Cauchy sequence. (Do not use the
Monotone Converging Theorem,)

Sol:

Let (x,) be a bounded, monotone increasing sequence and let M be its supremum. Let ¢ > 0.
Then there exists N such that M —e < xn < M. Now since (x,) is monotone increasing, it implies
M-e<x, <M for all n > N. So, for m,n > N, we have x,,,x, € (M — ¢, M]. In particular,
| — x| < €. Thus, () is Cauchy.

Give an example of a sequence that is not Cauchy, but |x,4+2 — 2| =0 for all n. > 1.
Sol:
{Oa 27 Oa 27 07 2; }

Show that series Y, ; cos{n} is divergent.
Sol:
Since limcosn = DN E, it implies Y. cosn diverges.

If ¥ a, converges where a, >0 for all n € N, and if b, = ®=*%= for n € N, then show that ¥ b, is
always divergent.

Sol:

Observe that

al + as ay +ag +as a; +ag t+as+aq
Yiby=ar+ + ++
2 3 4

( 1 1 1) (1 1 1) (1 1)
=a(l+=-+-+—|+ax|lz+-+—-|+as|=+- )+
2 3 4 2 3 4 3 4

Zalz
n=1

Since Z% diverges, it implies Y. b,, diverges.

Let K >0 and let f:R — R satisfy the condition |f(x) — f(y)| < K|z - y| for all z,y € R. Show that
f is uniformly continuous on R. Argue that the converse might not be true.

Sol:

Let € > 0. Choose 6 = &=. Then for any x,y € R, we have

If(w)—f(y)ISKIw—yI<K~%:e.

Thus, f is uniformly continuous. The function f(z) = \/z is uniformly continuous on [0, c0) but it
does not satisfy the above condition. (CHECK IT) Because if it was the case that for some K, we
had | £(2) - f(y)] < K|~ yl, then

VE - il < Klz -3
[z —yl
NN
1
VRN

But this inequality does not hold on [0, c0).

< Klz -y

A function f:R — R is said to be additive if f(z +y) = f(x) + f(y) for all z,y € R. Prove that if f
is continuous at a point zg then it is continuous on R.

Sol:

Let f be continuous at xy. Without loss of generality, assume xy = 0. Furthermore, observe that

f(x)=f(x+0)=f(x)+ f(0), we must have f(0) =0. Furthermore, f(0) = f(z -x) = f(z) + f(-x)



(13)

(14)

3

implies f(-z) =-f(z) for all z € R. Let ag € R. Now since f is continuous at 0, for any € > 0 there
exists 0 > 0 such that

7| <6 = |f(z)|<e.
So, for any a € R such that
la —aol <6 = |f(a—ap)|<e.

But then since f(a—ag) = f(a) - f(ap), we have f is continuous at ag. As ag was an arbitrary
element, it implies f is continuous on R.

Argue that if f : [a,b] — R is a continuous function, then you can extend if to a function f:R>R
such that f |f45)= f. (Some pictures might help)

Sol:
Since f is continuous on [a,b], it implies f is uniformly continuous. Define the function f as
f(a)7 r<a
f(x)={f(x), a<xz<b.

Clearly f is continuous on [a,b] and f|[a1b]: I

Show that if f is continuous on [0, c0) and uniformly continuous on [a, o) for some a > 0. Then f
is uniformly continuous on [0, c0).

Sol:

Given that f is uniformly continuous on [a,o0). Furthermore, since f is continuous on [0,a], it
implies f is also uniformly continuous on [0,a]. Combining these facts, it implies f is uniformly
continuous on [0, c0).

If f:R — R is uniformly continuous on R, and |f(x)| > k > 0 for all « € R, show that % is also
uniformly continuous on R.
Sol:
Note that for the function g(z) = f(lx), we would have |g(x)| < k. Let € >0. Note that
f(y) - f(2)
lg(x) =9l = | =570
f@)f ()

< Sl w) - f@)

Since, f is continuous, there exits d > 0 such that |f(z) - f(y)| < k*¢ whenever |z —y| < §. For this 6,
we would have

lg(z) —g(y)l <e.

Thus, g = 1/f is uniformly continuous.

Define g : R - R by g(x) = 2z for z rational, and g(z) = x + 3 for x irrational. Find all points at
which g is continuous.

Sol:

Continuous only on z = 3.

Give an example of a function on R that is continuous at exactly 3 points.

Sol:

f(z) = |22| when z is rational, and f(x) = 22 when x is irrational. The function is continuous on
x=-2,0,2.



(16) Prove or give a counterexample that the product of two uniformly continuous functions on R are not
uniformly continuous.
Sol:
Consider the function f(x) = x on R. The function g(z) = f(z)f(x) = 22 is not uniformly continuous
on R.(CHECK IT). Suppose on contrary that 2 is uniformly continuous on R. Let € > 0. Then there
exists § > 0 such that whenever |z - y| < §, we have |2% - y?| < e. Now, since |2% - y?| = |z — y||z + y],
by uniform continuity we have that |x + y| is bounded on R, a contradiction.



