
Math 6051/3051: Recitation 5
Naufil Sakran

Do all three of the following problems.

(1) (Ratio Test) Assume all sn ̸= 0 and that the limit L = limn→∞

∣∣∣ sn+1

sn

∣∣∣ exists.
(a) Show that if L < 1, then lim sn = 0.

(Hint: Select a so that L < a < 1 and obtain N so that |sn+1| < a|sn| for n ≥ N . Then show
|sn| < an−N |sN | for n > N .)
Sol:

Let L < α < 1 and consider ϵ < α−L. By definition of L = limn→∞

∣∣∣ sn+1

sn

∣∣∣, there exists N ∈ N

such that for all n ≥ N , we have | sn+1

sn
− L| < ϵ. But then

|sn+1

sn
− L| < ϵ < α− L

−(α− L) <
sn+1

sn
− L < α− L

−(α− L) + L <
sn+1

sn
< α

0 <

∣∣∣∣sn+1

sn

∣∣∣∣ < α

So, |sn+1| < α|sn| for all n ≥ N . So, for any m > N , we have

|sm| < α|sm−1|
|sm| < α2|sm−2|

< · · ·
|sm| < αm−N |sN |.

Thus, for m > N , we have |sm| < αm−N |sN |. Applying limit on both sides with respect to m,
we get

lim
m−→∞

|sm| < lim
m−→∞

αm−N |sN |

0 ≤ lim
m−→∞

|sm| = |sN | lim
m−→∞

αm−N .

But as α < 1, we have limm→∞ αm−N = 0. So,

0 ≤ lim
m→∞

sm ≤ 0

implies limm→∞ sm = 0.

(b) Show that if L > 1, then lim sn = +∞. (Hint: Apply (a) to the sequence tn = 1
|sn| and use the

fact lim |sn| = ∞ if and only if lim 1
|sn|=0 )

Sol:

Let tn = 1
|sn| . Then since limn→∞

∣∣∣ sn+1

sn

∣∣∣ = L > 1, we have limn→∞

∣∣∣ tn+1

tn

∣∣∣ = limn→∞

∣∣∣ sn
sn+1

∣∣∣ =
1
L < 1. By above, this implies lim tn = 0. Using the fact that lim |xn| = ∞ if and only if

lim 1
|xn|=0, we have limn→∞ |sn| = ∞.
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(c) Use this to show that if a > 0, then

lim
n→∞

an

n!
= 0

Sol:

lim
n→∞

∣∣∣∣∣∣
an+1

(n+1)!
an

n!

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣ a

n+ 1

∣∣∣∣
= 0

By the Ratio Test, this implies

lim
n→∞

an

n!
= 0.

(2) Which of the following sequences are increasing? decreasing? bounded?

(a) 1
n .
Sol:

Decrasing and bounded.

(b) (−1)n

n2 .
Sol:

Bounded.

(c) sin
(
nπ
7

)
.

Sol:

Bounded.

(d) n
3n

Sol:

Decreasing after some point and bounded.

(3) Let (sn) be a sequence
(a) Suppose

|sn+1 − sn| < 2−n for all n ∈ N.

Prove that (sn) is a Cauchy sequence and hence a convergent sequence.
Sol:

We know that |sn+1 − sn| < 2−n for all n ∈ N. Now for any m > n, we have
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|sm − sn| < |sm − sm−1 + sm−1 − sm−2 + sm−2 − · · ·+ sn+1 − sn|
≤ |sm − sm−1|+ |sm−1 − sm−2|+ · · ·+ |sn+2 − sn+1|+ |sn+1 − sn|

< 2−(m−1) + 2−(m−2) + · · ·+ 2−(n+1) + 2−n

= 2−n(2−(m−n−1) + 2−(m−n−2) + · · ·+ 2−1 + 1)

≤ 2−n · 1

1− 1/2
■

= 2−n+1.

In conclusion, for any m > n, we have

|sm − sn| < 2−n+1.

Now for any ϵ > 0, choose N ∈ N such that for all n ≥ N , we have

2−n+1 < ϵ.

So, for any m > n ≥ N , we have

|sm − sn| < 2−n+1 < ϵ.

Since, ϵ > 0 was arbitrary, we have that (sn) is a Cauchy sequence.

(b) Is the result in part (a) true if we only assume |sn+1 − sn| < 1
n for all n ∈ N. If it is true, prove

it, and if it is false, give a counterexample.
Sol:

This is not necessarily true because we will have problem at the ■ step i.e. our sequence will

not be bounded by a convergent sequence.
A counterexample would be to consider the sequence

sn =

n∑
k=1

1

k

which is the nth partial sum of the harmonic series. Then,

|sn+1 − sn| =

∣∣∣∣∣
n+1∑
k=1

1

k
−

n∑
k=1

1

k

∣∣∣∣∣
=

∣∣∣∣11 +
1

2
+ · · ·+ 1

n
+

1

n+ 1
−
(
1

1
+

1

2
+ · · ·+ 1

n

)∣∣∣∣
=

1

n+ 1

<
1

n
.

So, we have |sn+1 − sn| < 1
n . But then the sequence sn does not converge as

lim
n→∞

sn =

∞∑
k=1

1

k
= ∞.


