Math 6051/3051: Recitation 8

Naufil Sakran

Do all of the following problems.

(1) Determine whether the following series converges or diverges. If it converge, show why.
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(2) Determine which of the following series converge. Justify your answers.
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Prove that the following function is continuous at zq, using the € — § definition.

f(x):\/‘Ev zg = 0.

Sol:
Let € > 0. Choosing § = €2, we have whenever |z| < § implies |/z| < e. So, f is continuous at
o = 0.

For each non-zero rational number z, write = as %, where p, ¢ are integers with no common factors

and ¢ > 0. Define f(x) = %. Also define f(0) = 1 and f(z) = 0 for all € R\Q. For instance,

f(z) =1 for every integer = and f(1) = (—22) =  etc. Show that f is continuous at each point of

R\Q and discontinuous at each point of Q.
Sol:
Let z € R\Q. Then writing x in a decimal form, we have

T = ap.a102a304 * - -

Let (r,) be a sequence converging to x. Without loss of generality, we can take (r,) to be a
sequence of rational numbers since f(t) = 0 for ¢ € R\Q. Now consider the sequence (y;) defined
as yr = ap.a1as - - ax. Since, r, — x, there exists a subsequence (ts) C (yx) and a large N such
that for (ts) = (rn)n>n. Now, since f(yx) — 0 = f(z) implies f(t;) — 0 = f(x). In particular,
f(rn) — 0 = f(x). Since, (r,) was an arbitrary sequence, we have that f is continuous at every
irrational point x.

Now let zp € Q and 0 < € < f(xg). Now for any 6 > 0 and any irrational number y such that
ly — zo| < 8, we have |f(z9) — f(y)] = f(z¢) > €. Thus, f is discontinuous at every rational point.



